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Introduction

Computational fluid dynamics (CFD) methods

and advanced turbulence models are needed to pre-

dict propulsion aerodynamic effects in transonic and

supersonic free-stream conditions. Analytical results
are frequently used to supplement the experimental

data in critical design decisions. Accurate predic-

tion of the pressure distribution and the skin friction

coefficient is paramount to the design of propulsion

systems. In the area of propulsion integration, ac-

curate predictions of boundary layer structure, skin
friction, and flow separation by CFD methods are
critical.

Two-equation turbulence models (ref. 1) offer sev-

eral advantages over other approaches that compute

practical flow problems. For example, algebraic mod-
els lack turbulence history-dependent nonlocal effects

(through the convection and viscous diffusion of the

Reynolds stress models), effects which are known to

be important in determining the turbulence struc-

ture in complex flows. The numerical calculations
that use the more advanced Reynolds stress mod-

els (refs. 2 and 3) require the solution of trans-

port equations for each component of the Reynolds
stress tensor in addition to solution of the Navier-

Stokes equations; this approach requires tremen-
dous computational time for three-dimensional flow

problems. The transport equations for second-order

models require closure approximations for higher or-

der turbulence correlations with uncertain physical

foundations. Large-eddy simulations (ref. 4) con-

stitute three-dimensional time-dependent computa-
tions that require enormous computational time com-

pared with traditional transport equation turbulence

models. Moreover, the application of large-eddy sim-

ulations to practical flows is often hindered by the dif-
ficulties in modeling the turbulence near solid bound-

aries and the problem of defiltering the results in
complex geometries.

Transport equations have been included in the

standard, two-equation turbulence model of energy

and dissipation rate (k-e). (See ref. 1.) The k-¢
equations can be applied to the near-wall region as

well as far away from wall boundaries. For flow

regions far away from solid boundaries, the high
Reynolds number form of the model can be used;

however, wall-damping functions must be used near
wall boundaries.

Speziale (ref. 5) developed a nonlinear version of

the k-c model that broadened the range of linear

model application but maintained most of the pop-

ular features (such as reduction to mixing layer the-

ories for thin shear flows and the ease of application

in existing Navier-Stokes solvers without a substan-

tial increase in the computational time). Speziale
developed the new model by making an asymptotic

expansion subject to constraints of dimensional and

tensorial invariance, realizability, and material frame
indifference. The model thus obtained was shown

to yield substantially improved predictions in incom-

pressible turbulent channel flows and to yield normal
Reynolds stress differences that give rise to secondary

flows in square ducts. In the present research work,

the nonlinear model developed by Speziale was mod-
ified to include additional terms that contribute sub-

stantially to the magnitude of Reynolds stresses near
the wall boundaries.

For transonic and supersonic flow propulsion ap-
plications, the local density variation in standard in-

compressible models does not adequately duplicate

the experimentally observed reduction in growth rate

of the mixing layer with increasing convective Mach

number. However, substantial progress has been

made in the development of appropriate compress-
ibility corrections to the transport equation turbu-

lence models. (See refs. 6 and 7.) These corrections

resulted from direct numerical simulation of homoge-

neous compressible turbulence. Notably, Sarkar et al.

(ref. 6) recognized the importance of including com-
pressible dissipation in the two-equation turbulence

model-when computing high-speed flows. A sim-

ple correction was proposed for compressible dissipa-

tion that can be included easily in the existing two-
equation turbulence models. The standard model is
recovered when the model constants for these correc-

tions are assumed to be zero.

The objective of this study was to system-
atically investigate the effect of grid resolution,

near-wall damping, and various turbulence models

on the computed flow field. A general-purpose,
three-dimensional, multiblock Navier-Stokes code

(described and applied in refs. 8-10) was used in the

present study. The flow solver contains the Baldwin-

Lomax turbulence model, a two-equation k-_ turbu-

lence model with various near-wall damping func-
tions, and a nonlinear stress model for resolution of

flow-field anisotropies. In addition, the code has a

built-in performance module to compute quantities

such as lift, drag, thrust, and discharge coefficients.

During a typical numerical simulation, these quan-

tities are constantly monitored to assess the perfor-
mance of the propulsion system.

The computed results were compared with pub-
lished experimental data for flow fields of increas-

ing complexity. The geometries considered were a
flat plate (ref. 11), 16 ° and 24 ° compression corners

(ref. 12), a two-dimensional airfoil section (ref. 13),



andsupersonicflowthroughasquareduct (ref. 14).
Theflat platewasselectedbecauseit is thesimplest
of all the geometriesfor whichthe effectsof vari-
ousnear-wallgrid spacing,turbulencemodels,and
dampingfunctionscanbe tested.Thecompression
cornerandairfoilgeometriesrepresentthenextlevel
of flowcomplexitybecausethesecasescontainasep-
aratedflowregionthat interactswithashock.Inthe
squareduct,asecondaryflowstructuredevelopsper-
pendicularto themainflowandismainlyattributed
to the flow-fieldanisotropywhich is not simulated
by linear (isotropic)models.Dependingon thena-
ture of the flow,eitherthespace-or time-marching
optionsin the PAB3Dcodecanbe used. Space-
marchingsolutionswereobtainedfor the flat plate
andsquareductgeometries.Time-dependentoptions
wereusedto investigateseparatedandtransonicflow
fields(compressionrampandairfoilgeometries).

Symbols

A +, Ccp, Cwk

a

CD, CE

CF

Cf

Cp

c

Cd

cl

D

E,F,G

E,F,G

Ev, Fv, Gv

e

Ffric

Fldeb

constants in Baldwin-Lomax

turbulence model

duct half-width, m

model constants for nonlinear

model

average skin-friction coefficient,

f_ Cf dx

local skin-friction coefficient, Vw
qoo

pressure coefficient

turbulence viscosity coefficient for
k-e model, 0.09

airfoil chord length, m

section drag coefficient

section lift coefficient

duct width, cm

convective terms in x, y, and z
directions

flux terms in _, 77, and
directions

diffusion terms in x, y, and z
directions

total energy, Pa

total vector skin-friction force, N

Klebanoff intermittency factor

Fmax

Fwake

f,
H

J

k

Lk

L¢

l

M

Mt

Wto

n

N(nl, n2, n3)

n +

nma, x

w

P

Pr

Prt

P

q

q

Rc

Rt

Rx

S

Sk

function in Baldwin-Lomax turbu-

lence model

maximum of F(n)

wake function for Baldwin-Lomax

turbulence model

damping function for k-s equations

Heaviside function

Jacobian of coordinate

transformation, m -3

turbulent kinetic energy, Pa

near-wall term for k equation

near-wall term for E equation

mixing length for turbulent

viscosity, m

Mach number

turbulent Mach number

cutoff turbulent Mach number for

Wilcox model

normal distance from wall, cm

unit normal vector

law-of-the-wall coordinate,

nv/'Pw_-w npwuz

#w #w

normal distance from wall at Fmax

location, cm

production term for k-¢ equations

Prandtl number, 0.75

turbulent Prandtl number, 0.9

pressure, Pa

conservative variable

Q
J

heat flux

Un
cell Reynolds number, Rc = --

turbulent Reynolds number

Reynolds number based on stream-
wise distance from plate leading

edge, uocpoox
#oz

source term for Navier-Stokes

equation

source term for k equation



s_

T

t

u,v,w

"lA , V, W

U +

UT

X,y,Z

F

"7

AA

g

9

#

_,_,¢

P

o-k

oE

_j

TW

_d

Subscripts:

cros

e

i

max

source term for E equation

temperature, K

time, sec

velocity components in _, _?, and

directions, m/sec

velocity components in x, y, and z

directions, m/sec

law-of-the wall coordinate,
u Rc

U-r rt 'k

friction velocity, _

spatial coordinates, em

compressibility correction factor

ratio of specific heat, 1.4

incremental cell face area, m 2

Nronecker delta and boundary

layer thickness

turbulent energy dissipation

boundary layer momentum

thickness, cm

Von K_rm_n constant

dynamic viscosity

coefficient, m2/sec

generalized coordinates as func-

tions of x, y, z, and t

density, kg/m 3

diffusion coefficient for k equation

diffusion coefficient for c equation

Reynolds stress components, where

i and j represent x, y, or z

0u J

wall shear stress, #Onnlw

vorticity

matching point for inner and outer
boundary layer regions

edge of boundary layer

inner

maximum

min

O

W

x, y, z

cc

Superscripts:

L

T

Abbreviations:

k-_l

k-e2

k-c3

RMS

WF

minimum

outer

wall

x, y, and z derivatives

free stream

laminar

turbulent

k-e model, Jones and Launder wall

damping

k-e model, Van Driest wall

damping

k-c model, Speziale et al. wail

damping

residual mean square

wall function

Experimental Configurations

Flat Plate

THe supersonic data for this model were ob-
tained for an insulated flat plate tested in the NASA
Ames Research Center 6-inch Heat-Transfer Tun-

nel. The model was a fiat surface 40.64 cm (16 in.)

long and had a lower surface leading-edge chamfer
of 15°; it spanned the width of the tunnel. (See

ref. 11.) The leading edge was rounded to a radius

of 0.0076 cm (0.003 in.). The static pressure ori-
rices were 0.0343 cm (0.0135 in.) in diameter and

were placed 2.54 cm (1 in.) from the side edges of

the plate. Transition from laminar to turbulent flow
was forced near the leading edge by a strip of lamp-

black 1.27 cm (0.5 in.) wide placed at the leading

edge of the plate. Data were obtained at a free-

stream Much number of 2.5 and u tunnel total pres-

sure of 204 kPa (30 psia). The Reynolds number

based on the distance measured from the flat-plate
leading edge ranged from 2.1 x 106 to 6.2 x 106.

Boundary layer measurements were made over a
survey area 10.16 cm (4 in.) to 20.32 cm (8 in.)

from the plate leading edge. The boundary layer

measurements were performed with a total-pressure

probe. The centerline of the probe was 0.0165 cm

(0.0065 in.) above the surface when the probe was in
contact with the plate surface. The probe had a rect-

angular external dimension of 0.2032 cm (0.080 in.)
by 0.0330 cm (0.013 in.).
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The free-stream Mach number varied by no more

that 2 percent in the test section of the tunnel. That
variation resulted in a skin-friction coefficient error of

less than 2 percent; the total instrumentation error
for the skin-friction coefficient was =t=2.5 percent.

Compression Ramps

The compression ramp investigations were con-
ducted in the 8 × 8-in. Supersonic Blowdown Tun-

nel at Princeton University. (See ref. 12.) The tun-

nel can provide a test duration of 30 sec to several
minutes at stagnation pressures of 5.1 to 50.7 MPa

(50 to 500 atm) over a Mach number range of 2.84

to 2.95, depending on which test sections are uti-
lized. All of the models were tested in nearly adia-

batic wall conditions. The particular data used for

this study were obtained at a Mach number of 2.85

and a stagnation temperature of 262 K (472°R). The

corresponding free-stream unit Reynolds number was
0.64 × t06 cm -1 (1.6 x 106 in'I). The solid brass

model consisted of a short upstream fiat segment

joined to a ramp that was 15.24 cm (6 in.) long by

16 ° or 24 ° compression corners. Sidewall fences were
attached to each side of the ramp model to lessen the

influence of the tunnel wall boundary layer on the

compression corner flow. The boundary layer probe

used for this study had a 0.0178-cm (0.007-in.) flat

tip with 0.0076-cm (0.003-in.) orifices.

Pitot pressure tubes were used to make detailed

flow-field surveys upstream of the compression ramps
to determine the approaching flow properties. The

displacement and momentum boundary layer thick-
nesses determined from these measurements were

subsequently used to determine the computational

inflow boundary conditions. The estimated errors
were ±5 percent in the streamwise velocity compo-

nent and ±10 percent in the skin-friction coefficient
determined from the Preston tube measurements.

Subsonic Airfoil Section

The airfoil test case has an RAE 2822 airfoil con-

tour (ref. 13) and is a subcritical design section with a
trailing edge thickness of zero. The airfoil is 12.1 per-

cent thick and is designed for a lift coefficient of 0.56
at a free-stream Mach number of 0.66. The data were

obtained for a model with a 0.61 m (2 ft) chord and

that spanned 1.83 m (6 ft) during an experiment con-
ducted in the RAE 8 × 6-ft Transonic Wind Tunnel.

(See ref. 13.) The tunnel is a continuous, closed cir-

cuit type that operates at a stagnation pressure range

of 10 to 355 kPa (1.5 to 50 psi) with an average stag-
nation temperature of 307 K (552°R). Surface static

pressure data, wake pitot and static pressure data,
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and boundary layer pitot and static pressure data
were obtained for a variety of conditions with the

transition fixed. Additionally, the oil-flow visualiza-

tion technique was used to observe flow separation.

An extensive description of the tunnel flow condition,
wall interference, and instrumentation can be found
in reference 13.

Square Duct

The experiment was set up in a continuous flow,

open-circuit wind tunnel with a test section in the
form of a square duct 50.8 cm (20 in.) long made of

Plexiglas 1 material; it had a cross section of 5.08 cm

(2 in.) at the duct inlet. A square brass constant-

area duct with 2.54 cm (1 in.) on each side was

placed within the outer Plexiglas duct. This "duct
within a duct" configuration was built to ensure a

clean starting condition for the inner duct flow by

allowing the distorted flow that develops along the

side walls of the outer duct nozzle to be bypassed

through the annular space between the inner and
outer ducts. The experiments were conducted at a

free-stream Mach number of 3.9. The total pressure
and total temperature at this location were 276 kPa

(40 psi) and 300 K (540°R), respectively. A circu-
lar pitot tube with an outside diameter of 3.05 mm

(0.12in.) was used to obtain total pressure profiles at
three streamwise locations; a flattened-tip probe with

outside dimensions of approximately 2.5 × 6.6 mm

(0.1 × 0.26 in.) was used to obtain boundary layer
measurements. Wall shear stresses were calculated

from measurements obtained with several differently

sized Preston tubes resting on the wall. The experi-

mental uncertainty in measuring the skin-friction co-

efficient is about 10 percent. Other pertinent details

of the experimental setup and instrumentation are

given in reference 14.

Theoretical Formulation

The governing equations of the Reynolds-

averaged Navier-Stokes formulation include the con-
servation equations for mass, momentum, energy,

and the equation of state. In the present study, the

perfect gas law is chosen to represent the properties of
air. For flow that contains turbulence, the Reynolds

stresses are modeled using the eddy viscosity concept.

Turbulence models are essential for the realis-

tic simulation of aerodynamics in the high Reynolds

number regime. Two turbulence models were used

1Plexiglas: Rohm and Haas Co., Inc., Philadelphia,

Pennsylvania.



for the currentstudy:theBaldwin-Lomaxalgebraic
turbulencemodel(ref. 15)and a two-equationk-¢
turbulence model that follows the formulation of

Jones and Launder. (See ref. 1.) The Navier-Stokes

equations and the mathematical representations of
the relevant turbulence models are described in the

following sections.

Navier-Stokes Equations

The mass, momentum, and energy conservation

equations of the Reynolds-averaged Navier-Stokes

equations can be written in terms of generalized
coordinates and in a conservative form as follows:

oQ _ 0_ 06
o--_-+ -0-_-+ -o--_+ -D--_-= s (1)

where S = {0,0,0, 0,0} T for laminar or algebraic

turbulence modeling. However, if a turbulence ki-

netic equation is used, the source term for the en-

ergy equation is replaced by the source term -S k.

In equation (1),

Q Q
J

= -_[&E + _yF + &C]

- [¢xE + _F + _z¢]

- (_Ev + ¢_Fv + Czav)]

1
= ?[(_xE + _yF + VzG)

- (VxEv + _)yFv + _zGv)]

pu
Q= pv

_v
e

puw
G= pvw
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(e + p)w

Ev __ { 0 )"rxx

_'xy
"rxz

-qx + urxx + v'rxy + WVxz

F v ._- { 0 }7"xy

Tyy

7-yz
--qy + UTxy + Vryy + WVyz

0 }"rxz

_z
"rzz

--qz + wrxz + VTyz + w_'zz

7-1 -fi_r + -P-_rt am

-qy = 1(# L ttT) c9a2

_- I G + -_-;i__ Oz

In these equations, p is the density; u, v, and w are

the velocity components in the x, y, and z directions,
respectively; e is the total energy per unit volume;

the pressure p is related to e by

and, for example, Vxy = TLy +r T. The laminar shear

stress TLy may be expressed in the following forms:

E

F _

puv

puw
(e + p)_

puv

pv 2 + p

pvw

(e+ p)v

2 L(2Ou o_ o_)

_+_

2 L(2ov o_ o_)
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The forms of the turbulent shear stress ZT for various
turbulence models are described in the sections that

foIIow. In the PAB3D code, all streamwise deriva-

tives of the Reynolds stress (0/0_) have been omit-

ted from equation (1) for computational economy.
This formulation is known as the simplified Navier-

Stokes equation. The remaining cross-stream deriva-
tives can be numerically implemented either coupled

or uncoupled. The uncoupled derivative is the thin-

layer Navier-Stokes approximation. In all the results
in this paper, the derivatives are uncoupled.

Baldwin-Lomax Turbulence Model

The Baldwin-Lomax model (ref. 15) is an alge-

braic two-layer turbulence model in which the tur-

bulent eddy viscosity is evaluated as follows:

I.zT -- (#T)i (n < ncros)

#T = (#T)o (n >ncros)

where n is the normal distance from the wall and

ncros is the smallest value of n at which magnitudes
of the viscosities at the inner i and outer o boundaries

(#T)i and (pT)o are equal. The turbulent stress is
determined from

L\Oxj+ oxi2-

For the inner layer,

(,T)i = pl2t_l

where the mixing length for turbulent viscosity

,=

(3)

(4)

and the vorticity

= v/(uy- v_)_+(Vz - _)_ +(_ - _z)_ %)

For the outer layer,

(IAT)o = O.O168CcppFwakeFkleb(n) (6)

where Fwake is the smaller of nmaxFmax or

Cwknmax(U2+V2+W2)maxFmax. The term nmax is the
value of n that corresponds to the maximum value of

the model function F, Fmax, where

F(n) = niw[[1-exp(-n+/A+)] (7)

and the Klebanoff intermittency factor Fkleb is cal-
culat'ed by

fkleb = [1-F 5.5(nCkleb_61-1\r_max ] J (8)

The values of the constants appearing in equa-

tions (3)-(8) are listed in reference 15 as A + = 26,

Ccp = 1.6, Cwk = 0.25, and Ckleb = 0.3.

Two-Equation k-_ Turbulence Model

The Jones and Launder (ref. 1) formulation for the two-equation turbulence model uses k and c as the

principal variables. A modified form of the original Jones and Launder model is used in this study. This

modified formulation is fully three dimensionai, and the governing equations are written in a conservative form

in terms of generalized coordinates. The governing equations can be cast in the same form as the Navier-Stokes

equations (eq. (1)) with the following new definitions of the dependent variable and source terms:

S = Sk pk F = pvk

6
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tzc _-_ Fv = Gv = re
Ok Ok
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-c _ C2p_U + L_ Sk = -P - p(1 + r)c + LkS_ = Ct P-k

s_=--7--tt_) +t_) +t,_) +t_) +t_) +t _)

+tDT) +toy_) +t_-__) +2LtO-7-bTy) +to-;-_:)+t,a-7-b-;)

"t
+to--z)+to- j +to .j +to--z/+toni jf

Lk=2"Ltt 0: ) +t 0. ) +t oz )
Here, P is the fully three-dimensional production term defined as

or is expanded to

where

-- (0u T 0v T aw

+_[_ _+_x +_z X+N +_zxk_+ _

rrfa_ a_ (o, a_v (a_ a_)2P=" /,k_ + a_] + _z+N) -_- _+ az]

+ Lkax) +kay) +\az)J-3tax +_ +az)j

2 . f Ou Ov Ow)

k 2 #T #L pT,T = C,p_- ,_ = ,s + __ ,k = + -- C, = 0.091,
ae _rk

C, = 1.44 C2 = 1.92 [1 - 0.3 exp (-Rt2)]

ac = 1.3 crk = 1.0 Rt -- pk2

(9)

(10)

(ii)

(12)

(la)

(14)

(15)

where i and j represent x, y, or z. The compressibility correction F and the damping function f_ are described
next.

Compressibility correction functions for k-e

model. High-speed turbulent flows have different

characteristics than low-speed flows (incompressible

flows). For example, the rate of spread of the shear

layer in high-speed flows is much slower compared

with that of low-speed flows. Several corrections for

7



thiseffecthavebeendevelopedin thelast fewyears.
Thetwomostwidelyusedcompressibilitycorrections
aregivenbelow.

Sarkaret aL model (ref. 6):

F=M 2 (16)

Wilcox model (ref. 7):

where H(x) is the Heaviside step function; Mt is the

local turbulent Mach number defined as v_/a, in

which a is the local speed of sound; and F = 0 for no

compressibility correction.

Damping and wall functions for k-¢ model. Solv-

ing wall-bounded flows requires the use of damping
or wall functions. These functions adjust the turbu-

lence viscosity near solid surfaces. The details of the

damping and wall functions are given as follows.

Damping functions. The damping function f_

adjusts the turbulent viscosity through the term C_.

Far from the wall, f_ = 1; at the wall, f_ = 0.
Three damping function forms were investigated in

this study. They are referred to as k-el, k-¢2, and
k-E3 and are defined as follows.

The k-c1 (Jones and Launder) form (ref. 1):

3.41 ]f_= exp 1 +(-_'t/50)J (18)

The k-¢2 (Van Driest) form (as used by Nagano

and Hishida, ref. 16):

--n ÷

f_ = 1 - exp A+ (19)

Also, the quantity 2 in the near-wall term Le (eq. (9))

is replaced with 1 - f_.

The k-¢3 (Speziale, Abid, and Anderson) form

(ref. 17):

3.45 "_ n +f_ = 1 + V_] tanh 7--0" (20)

On any solid surface, the dissipation is set equal to

L k. Then, Le and L k are set to zero.

Simple wall function form. Neither the Baldwin-

Lomax nor the two-equation turbulence model (even

with damping functions) is capable of producing ac-
curate aerodynamic predictions based on minimal

grid spacing normal to a wall with n + k 5. One way

to achieve greater accuracy for grids with n + <_ 50

is through the use of the simple wall function (WF),

although the use of this function is limited to the
calculation of attached flows. The concept estimates
the wall shear stress from law-of-the-wall coordinates

n + and u + of the first cell from the wall (i.e., a sur-

face cell). The equivalent turbulence viscosity at the
wall is subsequently calculated from the estimated

shear stress. (In the standard two-equation turbu-

lence model, the turbulence viscosity at the wall is

normally set to zero.) The wall function approach
can be used to relax the restriction on n +, which

permits use of values up to 50. This approach typ-

ically speeds solution convergence rates by reducing
the total grid count to describe the problem. The

following steps describe the procedure for the wall
function approach.

First, evaluate the surface cell Reynolds number
as

Rc- pwUn

The Reynolds number Rc can also be written as a

function of the two nondimensional parameters u +

and n + as Rc --- u+n +. Thus,

u+ = __Re (21)
n +

A normalized velocity profile that relates u + and

n + near a solid wall is described in many fluid

mechanics textbooks. In a turbulent flow along a
wall, Von K_rm£n and others have suggested that

the flow should be divided into three zones governed

by the value of n +. Therefore,

u+ = f(n +) (22)

In turbulent flow along a wall, the flow may
be divided into three regions. First is the laminar

sublayer in which the viscous stress is much greater

than the Reynolds stress:

u + -- n + (n + < 5) (23)

The region immediately above the laminar sublayer
is called the buffer zone. In this zone, the Reynolds
and viscous stresses are of the same order:

u+ = ll.51ogl0 n + - 3.05 (5 < n + < 30) (24)

Farther from the wall, in the turbulent zone, the

Reynolds stress is much greater than the viscous
stress. Thus,

u + = 5.75 lOgl0 n + + 5.50 (30 < n +) (25)



In the solutionto equations(21)and (22), n + is

evaluated and the value of _-w can be specified at the
wall as follows:

TW = [(#wn+)/n]2 (26)
Pw

Then, because Vw = (#L _}_ _T ) OuN_ [w, a corrected tur-

bulent viscosity #wT at the wall can be obtained. This

corrected viscosity replaces the turbulent viscosity in

all the transport equations.

Nonlinear k-e model. The nonlinear k-¢ model

is obtained by adding quadratic terms to the linear

model tit to treat the mean velocity gradients. In

equation (27), the first two terms on the right-hand
side correspond to the linear model and the addi-

tional terms represent the contribution due to non-

linear effects. These changes to TiT in Ev, Fv, and

Gv as well as P are as follows:

),p_iUj = __6i j #T -t--pk

2 -fik3
+ 2uT- # + CDC 7

× (DimDmj - 1-Dmn-Dmn_ij _3 ]

2 -fik3
+ cEc.--y- ]

2 Lk (Ov_)2Wi.(n,m) (27)
;\ox.) J

Wij(n, m) = -6ij - 6in6jn + 4_im6jm (28)

-- ODij Oui ---- Ouj -Dki (29)
Dij _- 0-_ + V. V-Dij _x k Dkj Ox k

where

CD and CE

CE = 1.69.

-Dij = _ _ cgxj + Oxi ]

are model constants, and CD

This new nonlinear model differs from the origi-

nal model developed by Speziale (ref. 5) by the addi-
tion of the last term on the right-hand side of equa-

tion (25). (See development in ref. 18.) Because both

k and ¢ vary rapidly near solid boundaries, the addi-

tional term contributes significantly to the near-wall

anisotropies. The nonlinear terms added to the stan-

dard model are important for the prediction of sec-
ondary flow in a square duct. The secondary flow de-

velops in the cross-flow planes due to the cross-stream

gradients of the Reynolds stress. For linear mod-

els the cross-stream gradient of the Reynolds stress
difference is small; therefore, anisotropic flow fea-

tures do not develop. However, the nonlinear mod-

els produce gradients of sufficient magnitude to de-
velop the anisotropic or secondary flow feature. For

CD = CE = O, the linear model is recovered.

Performance Method

The performance method (refs. 19 and 20) obtains

body forces through the application of the momen-
tum theorem to a control volume that surrounds the

model. The choice of surfaces over which the integra-

tion of forces is performed provides several options for
calculation of the momentum and pressure forces on

the model. The method used for this investigation

integrates the mass flux and pressure forces over the
model with

r = Z[pU(U. N) + (p - poe)N] AA + Ffri¢ (30)

where F is the total vector body force, AA is the

area attributed to the cell face, and N is the unit
normal vector of the cell face. The static pressure

force on a solid wall is calculated by extrapolating the

cell-centered static pressure to the wall surface and

by assuming a zero velocity at the wall. The term
U. N for solid walls vanishes as solution convergence
is obtained.

Skin friction is calculated for the solid wall bound-

aries of the control volume. The viscous stress ten-

sor used to determine the skin-friction force is cal-

culated with only the velocity derivatives normal to

the surface. The velocity gradients are determined

by a two-point difference. The first velocity is a zero-
magnitude vector positioned on the surface. The sec-

ond velocity is the velocity at the cell center. The
local shear stress tensor is constructed from the nor-

mal velocity gradients multiplied by the local viscos-

ity. The viscosity was determined from Sutherland's

formula (ref. 21) and used the static temperature at
the local cell center.

Method of Solution

The simplified Reynolds-averaged Navier-Stokes

equations and the associated turbulence models have

been implemented in the computer code PAB3D. As

mentioned previously, the numerical code has the op-

tion for either space- or time-marching solutions. In
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particular,thespace-marchingoptionis wellsuited
for supersonicflowswith noembeddedsubsonicre-
gion or for flows in whichpressuregradientsare
practicallyabsent.Thespace-marchingalgorithmin
thePAB3Dcodeis alsomuchmorerobustthan the
parabolizedmarchingprocedure.Forcasesin which
thespace-marchingschemecriterionismet,thesolu-
tion is asaccurateasthoseobtainedwith thetime-
dependentalgorithm.However,the space-marching
procedurerequiressignificantlylesscomputertime
(approximatelya factor of 20 less) than does the
time-dependent procedure.

Computational Procedure for Navier-Stokes

Equations

The solver for the Navier-Stokes equations has

been implemented in the PAB3D code with three dif-
ferent numerical schemes: the Van Leer flux-vector

splitting scheme, the Roe flux-difference splitting

scheme, and the space-marching scheme which is a
modified version of the basic Roe scheme. These

schemes are basically implicit and upwind and are

constructed by using the finite volume approach.
Only the inviscid portion of the flux vectors E, F,

and G are subjected to the splitting and upwind pro-
cedures. The diffusion terms of the Navier-Stokes

equations are centrally differenced. A detailed de-

scription of the mathematical formulation for these
schemes can be found in reference 8.

The flux-vector or flux-difference splitting is used
in all three computational directions. The updated

solution at each iteration is obtained by using an

implicit procedure in the 7/ and ( mesh planes at

each constant _ value. The relaxation procedure in
the _ direction consists of a forward and backward

sweep. This particular implementation strategy has

an important advantage: because the metrics for

the implicit procedure are only required for up to

three planes, they are not stored for the entire grid

domain. Instead, they are recomputed one plane at

a time at the advancing front of the prevalent sweep
direction. This approach requires less memory for the

intermediate data structure. Typically, 20 words of

memory are required for each grid point for moderate

to large mesh sizes.

For a general time-dependent solution that uses
the Van Leer or the Roe scheme, each iteration

count contains a forward and backward sweep in the

i direction, with one step of an implicit update of the

solution in each of the cross planes. For several super-
sonic and subsonic flow conditions, the numerical

scheme of Roe can be further simplified into a space-

marching method as follows. The inviscid terms

10

in the Navier-Stokes equation are discretized as an
approximate Riemann problem. The interface flux

in the streamw]se direction is determined by separate

terms that depend on the quantities on the upstream

and the downstream sides of the interface. For fully

supersonic or subsonic flow with a small pressure

gradient, the information can travel only in the flow
direction and is carried by the terms on the left-

hand side. For these flow problems, the upstream

effect carried by the terms on the right-hand side

can be ignored when compared with the streamwise

influences. A solution is obtained by performing

sufficient implicit iterations in each plane until the
convergence criteria are met. A solution in the

entire computational domain is established in a single

forward sweep. All solutions in this paper were

obtained with either the standard or space-marching
version of the Roe scheme.

Computational Procedure for k-¢ Equations

The governing equations of the two-equation tur-

bulence model are written as a pair of coupled trans-

port equations in conservative form. In principle this

model could be implemented with the Navier-Stokes
equations as a set of seven coupled equations, or the

model could be a separate implementation that is un-

coupled from the Navier-Stokes equations. The fully
coupl_ed approach would result in an increase in the

computational requirements and numerical stiffness.

For this study, the k-E equations are implemented un-

coupled from the Navier-Stokes equations and from

each other. Although the stiffness remains, it is al-
leviated to some degree by solving these two equa-

tions with a much smaller Courant-Friedrichs-Levy

(CFL) number (usually 0.25 of the CFL number of

the Navier-Stokes equations). The potential differ-
ences in the development of the flow over time and

turbulence variable setshave not noticeably affected

the convergence rate or the quality of the solutions.

The governing equations for the nonlinear model

are the same as for the linear model except for

the differences in the expressions for the Reynolds
stresses. Because the additional nonlinear terms in

the Reynolds stresses are not large, they are treated
simply as added source terms in the code. However,

the variables u, v, w, k, E, and their first deriva-

tives are already calculated for the linear model. The
new variables that need to be calculated are the sec-

ond derivatives. When the first and second deriva-

tives are known, the nonlinear contribution of each

component of the Reynolds stresses can be obtained.
The nonlinear model required only 2 percent addi-

tional computational time at each time step and con-

verged somewhat more slowly than the linear model.



This result is not surprisingbecausethe nonlinear
k-_ model contains Reynolds stress relaxation terms

that are dispersive rather than dissipative.

Multiblock Structure and Boundary Conditions

The PAB3D code uses a general multiblock grid

topology to handle complex configurations. One-to-

one, multiple-to-one, or general patched interfaces

between the blocks are accepted by the code. An

important feature of the PAB3D code is the partition
concept in the streamwise direction. If different

viscous stress models are employed within a block,

the length of the block can be partitioned by means

of the starting i index for each viscous stress model.

The boundary conditions often include inflow,

outflow, free stream, solid walls, and geometrical

symmetry. Five types of inflow and outflow boundary
conditions are provided: Riemann characteristics,

fixed inflow total temperature and pressure, com-

pletely fixed inflow parameters, constant pressure for

subsonic outflow, and extrapolation for supersonic

outflow. The Riemann characteristics boundary con-
dition is used at free-stream boundaries. On a solid

boundary, either a no-slip or an inviscid-slip bound-

ary condition can be specified. Finally, the sym-

metry boundary conditions include mirror imaging

across a plane and polar symmetry around an axis

in any direction. A universal high-order symmetry
boundary condition is used that was developed by

Abdol-Hamid and Pao. (See appendix.) A logically

simple control structure is required to direct the code

execution for dimensions of the zones and blocks,
solver options, connections between blocks, bound-

ary conditions, time-stepping requirements, and tur-
bulence models.

For the turbulence transport equations, either

zero-order extrapolation or free-stream values are
used for k and _ along the outer boundaries. If

the flow is outgoing along the outer boundary, zero-
order extrapolation is used. If flow entrainment

is involved, then free-stream values are used along
the outer boundaries and the values of k and c

are set such that a preselected nominal turbulence
intensity is achieved. For all the results in this

paper, this level is 1 percent of the flow velocity. For
the inflow condition, laminar or algebraic turbulence

model solutions were computed for the first few

planes of the upstream blocks. In that flow region,

the inflow profile for k takes the same shape as

the vorticity profile except that it is multiplied by

a specified value of maximum turbulence intensity.
(See fig. 1.) When the k profile is known, the E profile

is obtained based on the hypothesis that production

equals dissipation. These values of k and E are used

as boundary conditions for the k-E blocks. On any

solid surfaces in which the k-c3 model is applied, the

dissipation ¢w is set equal to the value of L k (eq. (10))

and k is set to zero. For k-c2 and k-E2, Cw = kw -- 0.

Results and Discussion

We selected the well-establish_ed properties of flow
over a fiat plate to calibrate the different forms of the

two-equation k-¢ model utilized in this report. Mach

numbers of 2 and 0.4 were selected for comparisons.

Figure 2 shows law-of-the-wall solutions (u + = u*/ur
versus y+) that use the k-_l model for subsonic and

supersonic flows at R e = 30 000, where u* is defined
as

Similar results were produced for both subsonic and

supersonic flows. Then, the supersonic flow case was
computed based on the Baldwin-Lomax turbulence

model. (See fig. 3.) Both turbulence models agreed
well with the theoretical curves. The k-el, k-c2, and

k-e3 turbulence models are compared (fig. 4) and all

three models produce very similar results; that is,
all three models predicted the Von Khrm_n constant

of k -- 0.41 within less than 2 percent. As expected,

the different forms of the turbulence models give very
similar predictions for this attached flow case.

Supersonic Flow on Flat Plate

In many cases, skin-friction drag represents a sig-

nificant portion of the total drag of a supersonic ve-
hicle. Accurate prediction of skin friction is essential

for CFD applications in design and analysis. An in-

sulated flat plate (ref. 11) operated at a Mach num-
ber of 2.5 over a Reynolds number range of 2.1 x 106

to 6.2 x 106 is modeled in the present study. Pre-

dicted velocity and average skin-friction predictions

are compared with the experimental data. Both the
Baldwin-Lomax and the k-_ turbulence models are

used to predict the aerodynamic characteristics of
this flow.

In the present analysis, a grid distribution of

71 x 2 x 81 was used. The plate was 12 in. long,

and the Reynolds number at the back of the plate was

taken to be 6.2x 106. First, the number of grid points

was fixed at 81 in the k direction (normal to the
wall) and the value of n + (nondimensional distance

normal to the wall of the first grid) varied from 0.5
to 10. Figure 5 shows the streamwise velocity profile

(at x = 6 in.) versus y/8, where 8 is the boundary

layer momentum thickness. Both turbulence models

predict reasonably well the overall boundary layer
velocity development for n + < 10. However, the
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k-el model kept a very well-defined boundary layer
development at n + = 10. On the other hand, the

Baldwin-Lomax turbulence model gives a boundary
layer development for n + = 10 similar to the one

produced from a laminar solution. Figure 6 shows

the average skin-friction predictions compared with

experimental data as a function of Reynolds number.
The Reynolds number is calculated based on the free-

stream condition and the distance along the plate

from the leading edge. The k-e model average skin-

friction prediction agreed well with experiment for
n + < 5. However, the Baldwin-Lomax turbulence

model gave poor predictions of CF for n + > 2.5.

We performed a second set of computations by

fixing n + -- 5 and changing the number of grid points
in the normal direction from 21 to 81 with the k-e

turbulence model. Figure 7 shows the comparison

of experimental data for a Baldwin-Lomax solution

computed with 81 grid points in the normal direction

and the k-e turbulence models solutions with varying

numbers of grid points. The k-e model produces
similar results for all grid distributions computed.

A similar result was obtained for the average skin
friction on the plate. Thus, the distance of the

first grid point from the wall is a very important
parameter in predicting boundary layer flows, but

the number of grid points is not important.

As shown in figure 6(a), the two-equation k-el
turbulence model fails to predict the wall skin friction

for n + > 5. Figures 8 and 9 show the improvement

obtained by using the simple wall function in k-¢1

to predict the streamwise velocity variation and skin

friction at n + = 10 and 50, respectively.

The flat-plate test case was selected because it
is the simplest of all the geometries for which the

effects of various near-wall grid spacing, turbulence

models, and damping functions can be easily tested.
The results obtained With the k-e turbulence model
were much more accurate and consistent than those

for the Baldwin-Lomax turbulence model for a wider

range of n + (height of first grid line normal to

solid surface). The n + value is a very important

parameter for accurate predictionof boundary layer
development in attached and separated flows. The

number of grid points normal to the solid surface is
not as important as a correct value of n +.

Vas, and Bogdonoff. (See ref. 12.) The free-
stream unit Reynolds number was 0.64 × 106 cm -1

(1.6 × 106 in-l). For the 16 ° compression comer,
both the Baldwin-Lomax and k-e solutions were ob-

tained. Only k-e solutions were obtained for the

24 ° compression ramp because a steady-state solu-
tion could not be obtained from the Baldwin-Lomax

turbulence model. Figures 10 and 11 show the com-

puted wall pressures and local skin-friction distribu-

tions and comparisons with the experimental data
for ramps at 16°. The calculations were done with a

two-block configuration. The first block employs the
Baldwin-Lomax turbulence model with 10 x 2 x 101

grid points and sets the initial boundary condi-
tions for the values of k and e for the downstream

second block. The second block spans the region

from upstream of the separated flow region to the

outflow boundary. This block had the dimensions

152 × 2 × 101 and used the k-el code option to simu-
late the fl0w field. Mesh Sequencing is used to assess

the effect of grid refinement on the computed results

for the 24 ° compression ramp. The grid is setup such
that the first index refers to the number of points in

the j direction and the last index refers to the num-

ber of points in the k direction. The base grid, the

half grid in the j direction, and the half grid in the

j and k directions were selected to investigate the

effect_of grid resolution on the k-e solutions. Only

the fine grid (base grid) solution is shown for the 16 °
ramp. In the simulation of the 16 ° ramp (fig. 10(a)),

good agreement was obtained in the prediction of the
surface pressure distribution when both turbulence

models were used. However, the skin-friction distri-

bution produced different results. (See fig. 10(b).)

For the 24 ° compression ramp, the computed pres-

sure distribution was insensitive to the effect of grid

refinement as shown in figure ll(a). However, the
skin-friction results showed some sensitivity to the ef-

fect of grid refinement. (See fig. ll(b).) Good agree-
ment was obtained for skin friction on the upstream

portion of the ramp. The experimental data on the
24 ° ramp indicate a massive separation. The region

between x/_ -= -1.5 and 1.0 where no experimental
data were taken indicates the separation. The k-el

model was able to predict the attachment point accu-

rately at x/6 "_ 0.03, but it predicted the separation

point slightly downstream of the experimental data

at x/6 _. -0.15.

16 ° and 24 ° Compression Ramps Airfoil Configuration RAE 2822

The compression ramp is a very simple test case

but contains complex aerodynamic characteristics.
A flow of Mach 2.85 over 16 ° and 24 ° ramps has

been computed and compared with data by Settles,

Experimental data for the RAE 2822 (case 10
at R = 6.2 × 106) two-dimensional airfoil section are

available in reference 13. The experimental data
used for this comparison were at a free-stream Mach
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number of 0.75 and at an angle of attack of 3.19
in tunnel coordinates. The computational results

were performed at 2.8 ° to compensate for wall in-

terference; the computation also included an angle-

of-attack correction equation from reference 13. Six

blocks are used in the present investigation and to-
taled 31 000 grid points. Two of these blocks were at

the leading edge at x/c <_ 0.03, where the flow was

assumed to be laminar as in the experiments. The

outer boundary extent was 8c, and no point vortex
correction was included in the far field. The base

grid, the half grid in the k direction, and the half grid

in the k and j directions are selected to investigate

the grid effect on the k-¢ solutions. Figure 12 shows

the comparisons among the three different grids and
the experimental data. No significant differences are

apparent between the half grid in the k direction and

the base grid in the predicted pressure, velocity, and
skin friction.

In the rest of this section we use the base grid
for comparisons with the experimental data. The

value for the first grid height in the computational

mesh was n + < 2. Figures 13(a)-13(c) show the
Baldwin-Lomax and k-_l turbulence model predic-

tions compared with the experimental data. In fig-

ure 13(a), both models predict a similar pressure co-

efficient Cp distribution, although k-el predicts the
shock location slightly farther forward, which is in

better agreement with the experiment. Figure 13(b)
presents the local skin-friction predictions compared

with the experimental data. The skin friction is nor-

malized by the local boundary layer edge condition.

Both models gave similar predictions for skin fric-
tion upstream of the shock. However, the Baldwin-

Lomax turbulence model gave a much better pre-

diction of the skin-friction data point downstream

of the shock location. In general both models over-

predicted the local skin friction to x/c <_ 0.6. Fig-

ure 13(c) shows the experimental streamwise velocity
profile at x/c = 0.9 compared with predictions from

both turbulence models. The k-el model provided a

more accurate velocity profile than did the Baldwin-
Lomax prediction. Different wall-damping function

forms affect Cp, the velocity profile, and the local

skin-friction prediction as shown in figure 14, which
compares k-E1, k-e2, and k-e3. If n + < 25 is re-

laxed (fig. 15), again the k-el model (or any of the

other forms) significantly overpredicts the local skin-
friction values. However, use of the simple wall func-

tion brings the local skin friction within the range

of the other models (predicted at n + < 2). All wall

pressure distribution predictions with different wall-

damping functions in the k-e model and the simple

wall function are summarized in figure 16. The k-el

model (n + = 25) gives completely inaccurate predic-

tions of Cp. However, the simple wall function with
n + < 50 gives similar predictions compared with any
of the other models operated at much smaller n + val-

ues (<2). Also, the simple wall function with a larger
value of n + accelerated the convergence rate of the

k-E model as shown in figures 17 and 18. These fig-

ures show the L-2 norm of the residual RMS and of cl

as a function of the number of iterations, respectively.
A solution with the wall function and n + = 50 was

established in less than 2000 iterations, which was

similar to the number of iterations required with the

Baldwin-Lomax turbulence model. The following ta-

ble summarizes the cd and cl predictions based on
the different models and modifications.

Procedure

Experiment ........
k-E1, n + < 2 ........

k-¢2, n+ < 2 ........

k-e3, n + < 2 ........

Baldwin-Lomax, n+ < 2 . . .

WF, n + < 25 ........

W'F, n + < 50 ........
k-el, n+ < 25 .......

cl cd

0.743 0.0242

0.720 0.0257

0.764 0.0269
0.772 0.0257

0.756 0.0290

0.730 0.0261

0.736 0.0231

0.364 0.0222

Supersonic Flow Through Square Duct

Numerical calculations that used linear and non-
linear k-g turbulence models were carried out for

supersonic flow through a square duct. Figure 19
shows a schematic of the known secondary flow pat-

tern in square duct flows. The flow is symmetric

about the y- and z-axes so only one quadrant of the

duct flow was computed. A Mach number of 3.9
and a unit Reynolds number of 0.012 x 106 cm -1

(0.035× 106 in, l) were used with a 41 x41 grid in the

cross-flow plane and 251 grid points in the streamwise

direction. Because the flow is complex, appropriate

grid spacing near solid boundaries was maintained
to ensure appropriate near-wall effects of k and e.

The first point located off the wall was n + < 1 and

the grid was stretched in the normal direction by an

exponential grid-stretching formula. Approximately

16 points were placed in each direction normal to the

walls to resolve the boundary layer. The rest of the
points in the normal direction were distributed uni-

formly between the edge of the boundary layer and

the symmetry boundary.

Figures 20-24 show comparisons of the results ob-
tained for the linear and nonlinear turbulence models

and the experimental data. (See ref. 14.) Figure 20
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presentsthe effectsof linearandnonlinearturbu-
lencemodelson the computedskin-frictiondistri-
butionat x/D = 50. The skin-friction distribution

obtained with the nonlinear model is in better agree-
ment with the experimental data, whereas the linear

model shows a monotonic increase in value for Cf
with the spanwise coordinate. The nonlinear model
captures the undulations observed in the experimen-

tal data with remarkable precision. These undula-

tions represent the convecting effect of the secondary

flow, corrections which were not predicted by the lin-
ear model.

Figure 21 shows the effect of two wall-damping

functions (eqs. (18) and (20)) on skin-friction pre-
dictions when the nonlinear model is used. This re-

sult demonstrates that to obtain improved predic-

tions, the nonlinear model has to be coupled with

the appropriate damping function such as that devel-
oped by Speziale, Abid, and Anderson. (See ref. 17.)

Previous studies with this near-wall model gave im-

proved predictions in simple wall-bounded separated

flows such as the backward-facing step. (See ref. 22.)

Figure 22 shows the effect of including compress-

ibility corrections (eqs. (16) and (17)) on skin-friction
predictions with the nonlinear model. Compressibil-

ity correction is clearly not needed for this case; the

results obtained without a compressibility correction

and with the Wilcox model (ref. 7) are both in close
agreement with the experimental data. However, the

Sarkar et al. model (ref. 6) gave lower values of Cf.
These lower results are not surprising because the

compressibility correction in reference 6 is applied

to all regions of the flow and does not have a built-
in mechanism to switch off near the wall boundaries

where the compressibility effects are minimal. In

contrast, the Wilcox compressibility correction has
a switching function based on the local turbulence

Mach number and turns off automatically in the re-

g-ions with little or no compressibility.

Figure 23 shows the effect of grid resolution on
the computed skin-friction distribution. These com-

putations were performed for 21, 31, and 41 points
in the normal direction but with the same stream-

wise grid spacing. When the mesh in the normal
direction was refined, the stretching coefficient was

progressively increased to obtain finer mesh spacing

near the wall, but an identical number of grid points

in the boundary layer was maintained. The points

in the outer region increased by a factor of 3 in the
transition from a coarse to a finer mesh.

Figure 24 shows the cross-flow velocity patterns

computed with the linear and nonlinear models and
the experimentally measured cross-flow pattern at

x/D = 50. Dramatically improved results are

obtained with the nonlinear model shown in fig-

ure 24(b). The results clearly show that the sec-

ondary flows (vortices) are symmetrical about the

diagonal and rotate in opposite directions. These
vortices are essentially driven by the gradients of

the Reynolds stresses, which cannot be simulated

with the linear models and which transport net mo-
mentum toward the corner of the duct. The com-

puted cross-flow velocity vectors that are based on

the nonlinear turbulence model agree well with the

experimentally observed patterns. (See fig. 24(c).)

In contrast, the linear model (fig. 24(a)), predicts
a unidirectional flow because the turbulence model

cannot adequately represent the flow physics.

Concluding Remarks

A systematic investigation was conducted to as-
sess the effect of grid resolution and various near-wall

damping functions in the turbulence model of kinetic

energy (k) and dissipation rate (E) on the computed
flow field of several aerodynamic configurations. The

computed results were compared with the available

experimental databases. The geometries considered

in the present study were a flat plate, 16 ° and 24 °

compression corners, a two-dimensional airfoil sec-

tion, and supersonic flow through a square duct. In
addition, a nonlinear k-¢ turbulence model was used

to predict the aerodynamic characteristics of super-

sonic flow through a square duct, and the effect of

compressibility corrections was investigated. Skin-
friction, pressure, and velocity distributions were rea-

sonably predicted with the two-equation turbulence
model in its different forms.

The flat-plate test case was selected because it is

the simplest of all the geometries for which the effects
of various near-wall grid spacing, turbulence models,

and damping functions can be easily tested. The
results obtained with the Jones and Launder turbu-

lence model (k-el) were more accurate and consistent
than those for the Baldwin-Lomax turbulence model

for large n + (height of first grid line normal to solid

surface). The number of grid points normal to the

solid surface is not as important as a correct value

of n +. Use of the simple wall function with the k-¢

turbulence model allowed the use of coarser grids in
which n + < 50 but which maintained reasonably ac-

curate predictions of skin friction.

The compression corner and airfoil geometries

represent the next level of flow complexity because

these cases contain separated flow regions that in-
teract with a shock. A flow of Mach 2.85 over 16 °

and 24 ° compression ramps was computed and com-

pared with the experimental data. For the case of
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16° ramp,goodagreementwasobtainedinpredicting
the surfacepressureandthe skinfrictionupstream
of theramp.The24° ramphada massiveseparated
flowregion.Thek-E1 model accurately predicted the

reattachment point but predicted the location of the

separation point slightly downstream of the experi-
mental data.

For the airfoil geometry, the k-E model with

Jones and Launder damping function (k-E1) and
the Baldwin-Lomax turbulence model gave similar

pressure coefficient distributions, although the k-E1

model predicted the shock slightly farther, in better

agreement with the experiment. Both models also
yielded a similar prediction for skin friction upstream

of the shock. The simple wail function with the k-El

turbulence model at large values of n + brought the

local skin friction within the range of the predictions
obtained for other models (predicted at n + < 2).

Also, a larger n + accelerated the convergence rate

of the k-E model. Comparisons were also made be-

tween the models of Jones and Launder (k-E1), Van

Driest (k-E2), and Speziale et al. (k-e3). All models

predicted similar pressure distributions, but use of

different forms of the damping function yielded sig-
nificantly different skin-friction predictions upstream

of the shock. In general, the k-E1 model most accu-

rately predicted the overall features of the flow field.

For the test case that featured square duct ge-

ometry, a secondary flow structure developed in the

direction perpendicular to the main flow. The skin-
friction distribution with the nonlinear k-¢3 turbu-

lence model was in better agreement with the ex-
perimental data, whereas the linear k-s3 turbulence

model produced a monotonic increase in the local

skin friction with the spanwise coordinate. The non-

linear model clearly captured the major trends ob-

served in the experimental data and flow-field fea-

tures. The undulations that were observed represent

the convecting effect of the secondary flow, undula-
tions which were not predicted by the linear turbu-

lence model. The near-wall damping function devel-

oped by Speziale et al. (k-e3) helped to yield better
prediction of the skin-friction distribution than that

of Jones and Launder (k-el) for this case. The com-
pressibility correction of Wilcox performed better
than that of Sarkar et al. for this case because the

former has a built-in mechanism to switch off near

the wall where compressibility effects are small.

This investigation provided significant insight into
the applications of turbulence models in the predic-

tion of attached and separated flows. Comparisons of

grid effects and the use of different turbulence models
indicate that the k-e turbulence model can be used

successfully to predict these flows.

NASALangley Research Center
Hampton, VA 23681-0001
October 26, 1994
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Appendix

Universal High-Order Symmetry

Boundary Condition for Navier-Stokes
Codes

A universal symmetry boundary condition was
derived by using a general three-dimensional curvi-
linear coordinate system. Here, Xl, x2, and x3 are
the computational domain axes and ul, u2, and u 3
are the corresponding velocities. At each cell face, a
local Cartesian coordinate system (X1,)(2, and X3)
is established by the inward normal of that cell face
and two other linearly independent directions in the
plane of the cell face. A velocity vector in this neigh-
borhood is decomposed into vector components in
the local coordinate system. Across this boundary, a
ghost point b is assumed to be located at the mirror
image of the real point p within the computational
domain. (See fig. A(1).) The velocity vector asso-
ciated with the ghost point is the mirror image of
the original velocity vector and satisfies the follow-
ing condition:

(A1)

where Ui is related to the local velocities ui for points
p and b through the A (transformation) matrix,

where

U b = Au b
(A2)fU p Au p

nl n2 n3 ] }

A = rnl m2 m3
ll 12 13 (A3)

A-1 __ A T

and n, m, and I axe the directional cosines between
the X and x coordinates. Equation (A2) can be
rewritten from equations (A1) and (A3) as follows:

u b _= A-1U b

= A-I(uP- 2UI{1, O,O}T)

= A-1Au p - 2u1AT{1, 0, 0} T

Furthermore, the above equation can be written in
the simpler form,

u b = up - 2U1 {nl, n2, n3} T (A4)

Special Cases

HaIfplane Symmetry

In the case of halfplane symmetry, the symmetry
plane is aligned with the xl-x3 plane and the N array
is defined as

N --- {0, 1, 0} T

Substituting the values for N in equations (A2)
and (A4) yields

u2 -- -u2
u3 u3

Quarterplane Symmetry

In the case of quarterplane symmetry, two sym-
metry planes exist. One is the same as the halfplane
symmetry case; the other symmetry plane is aligned
with the x2, x3 plane. The N array is defined as

N = (1,0, 0}T

Substituting the values for N in equations (A2)
and (A4) yields

u2 _ 42
43 43

This mathematical formulation is implemented in
the PAB3D Navier-Stokes code and replaces all the
special cases of symmetry boundary conditions. It
is also used for specifying a slip boundary condition
for Euler flow calculations. The halfplane symmetry
for a polar grid is an exception to this rule. The
velocity vector image is reflected across the halfplane
boundary, whereas the ghost points at the pole are
reflected across a moving mirror. Nevertheless, the
generalized symmetry boundary condition can be
easily modified to work in this case, and it has
been included in the PAB3D code. This generalized
symmetry condition has tremendously simplified the
boundary condition procedure in advanced Navier-
Stokes and Euler CFD methods. It also provides the
ability to include symmetry boundary conditions in
a structured CFD grid without the restrictions for
alignment with the global coordinate system.
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Figure 1. Inflow boundary condition for k-e turbulence model.
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